The Interaction of Representation and Reasoning

Alan Bundy Joint work with Boris Mitrovic

> School of Informatics, University of Edinburgh

Belgrade 16th May 2013

Outline

1 The Need for Language Repair

- 2 The Reformation Algorithm
- 3 Discussion

Repairing Faulty Theories

KnowItAll Ontology:

```
cap_of(Tokyo, Japan) cap_of(Kyoto, Japan)
```

Proof of inconsistency:

```
\frac{\textit{cap\_of}(\textit{Kyoto},\textit{Japan}), \quad \textit{cap\_of}(x,z) \land \textit{cap\_of}(y,z) \implies x = y}{\textit{Cap\_of}(\textit{Kyoto},\textit{Japan}),} \frac{\textit{cap\_of}(\textit{Kyoto},\textit{Japan}), \quad \textit{cap\_of}(y,\textit{Japan}) \implies \textit{Tokyo} = y}{\textit{Tokyo} = \textit{Kyoto}}
```

Reformation repair:

Block unification of $cap_of(Kyoto, Japan)$ and $cap_of(y, Japan)$, e.g., change $cap_of(Kyoto, Japan)$ to $was_cap_of(Kyoto, Japan)$, or add time argument to cap_of , e.g., present, past.

Repairing Planning Failures

Plan failure in ORS: Mismatch of

pay(pa, \$200, spa) and $pay(pa, \$200, spa, credit_card)$

Reformation repair: Unblock failed unification.

Change planning agent's pay/3 to pay/4.

Repairing Physics Theories

Where's My Stuff Trigger:

$$O_1 \vdash f(stuff) = v_1$$
 $O_2 \vdash f(stuff) = v_2$
 $O_{arith} \vdash v_1 \neq v_2$

Proof of Inconsistency:

$$\underbrace{\frac{f(\mathit{stuff}) = v_1, \quad y = x \land y = z \implies x = z}{f(\mathit{stuff}) = v_2,} \frac{f(\mathit{stuff}) = z \implies v_1 = z}{v_1 = v_2}}_{\text{$V_1 = V_2$}}$$

Reformation Repair:

Block unification of $f(stuff) = v_2$ and f(stuff) = z. e.g., rename two occurrences of *stuff* apart.

Example: Repairing a Faulty Proof of Cauchy's

Faulty Theorem: The limit of a convergent series of continuous functions is itself continuous [Cauchy].

Counter-Example: Square wave (discontinuous) is convergent sum of sine waves (continuous) [Fourier].

Failed unification:

$$y \ge y$$
 and $n \ge m(\epsilon/3, x + b(\delta(\epsilon/3, x, n)))$

due to an occurs check failure, where m, δ and b are Skolem function.

Repair: Change 'convergent' to 'uniformly convergent'.

Convergent:

$$\forall x. \forall \epsilon > 0. \exists m. \forall n \geq m. \mid \sum_{i=-\infty}^{n} f_i(x) \mid < \epsilon$$

Uniformly Convergent:

Convergent:
$$\forall \epsilon > 0. \exists m. \forall x. \forall n \geq m. \mid \sum_{i=1}^{n} f_i(x) \mid < \epsilon$$

Note that $\forall x$ is moved to after $\exists m$.

The Standard Unification Algorithm

Case	Before	Condition	After
Trivial	$s \equiv s \wedge E; \sigma$		Ε; σ
Decomp	$f(s_1,\ldots,s_n)\equiv f(t_1,\ldots,t_n)\wedge E;\sigma$		$s_1 \equiv t_1 \wedge \ldots \wedge s_n \equiv t_n \wedge E; \sigma$
Clash	$f(s_1,\ldots,s_m)\equiv g(t_1,\ldots,t_n)\wedge E;\sigma$	$f \neq g \lor m \neq n$	fail
Orient	$t \equiv x \wedge E; \sigma$		$x \equiv t \wedge E; \sigma$
Occurs	$x \equiv s \wedge E; \sigma$	$x \in V(s) \land x \neq s$	fail
Var Elim	$x \equiv s \wedge E; \sigma$	$x \not\in V(s)$	$E\{x/s\}; \sigma \oplus \{x/s\}$

- Adapted from [Baader & Snyder, 2001][p455].
- Returns unique most-general unifier.

The Modified Unification Algorithm

Case	Before	Condition	After
CCs	$f(s_1, \ldots, s_m) \equiv$	$f = g \wedge n = m$	$\bigwedge_{i=1}^{n} s_i \equiv t_i \wedge E; \sigma$
CC_f	$g(t_1,\ldots,t_n)\wedge E;\sigma$	$f \neq g \lor n \neq m$	fail
VC_f	$x \equiv t \wedge E; \sigma$	$x \in \mathcal{V}(t)$	fail
VC_s	or $t \equiv x \wedge E$; σ	$x \not\in \mathcal{V}(t)$	$E\{x/t\}; \sigma \oplus \{x/t\}$
$VV_{=}$	$x \equiv x \wedge E; \sigma$		E; σ
VV_{\neq}	$x \equiv y \wedge E; \sigma$	$x \neq y$	$E\{x/y\}; \sigma \oplus \{x/y\}$

- Equivalent to standard unification algorithm.
- Groups compound/compound and variable/compound cases into success/fail.

The Reformation Algorithm

Case	Input Problem	Condition	Block	Unblock
CCs		$f = g \wedge m = n$	Make $f \neq g \lor m \neq n$	
			$\bigvee_{i=1}^{n}$ Block $s_i \equiv t_i$	$\bigwedge_{i=1}^n$ Unblock $s_i \equiv t_i$
	$f(s_1,\ldots,s_m)\equiv$		∨ Block <i>E</i>	∧ Unblock E
CC_f	$g(t_1,\ldots,t_n)\wedge E$	$f \neq g \lor m \neq n$	No action	Make $f = g \wedge m = n$
				$\bigwedge_{i=1}^n$ Unblock $\nu(s_i) \equiv \nu(t_i)$
				\wedge Unblock $\nu(E)$
VC_f		$x \in \mathcal{V}(t)$	No action	Make $x \not\in \mathcal{V}(t)$
	$x \equiv t \wedge E$			\wedge Unblock $\nu(E\{x/t\})$
VC_s	or $t \equiv x \wedge E$	$x \not\in \mathcal{V}(t)$	Make $x \in \mathcal{V}(t)$	
			∨ Block E{x/t}	Unblock $E\{x/t\}$

- Adapts modified unification algorithm.
- Flips success and failure cases to block/unblock unification.
- Blocking is a disjunction; unblocking a conjunction.
- Implemented and evaluated in SWI Prolog.

Propagating Repairs

Propagate changes to ancestor axioms.

$$\frac{Q, \neg Q' \lor L_1}{L_1[e_1]\sigma_q,} \quad \frac{R, \neg R' \lor \neg L_2[e_2]}{\neg L_2[e_2]\sigma_r}$$

$$\frac{Q, \neg Q' \lor L_1}{L_1[e_1]\sigma_q, \frac{R, \neg R' \lor \neg L_2[\nu(e_2)]\sigma_r\overline{\sigma_r}}{\neg L_2[\nu(e_2)]\sigma_r}}$$
Blocked

- Can we insist one parent is an axiom?
- Refinement requires decisions.
 - Which instances of functions/predicates are renamed, e.g., cap_of or was_cap_of?
 - What values are given to new arguments, e.g., cap_of(London, UK,...)?

Boris Mitrovic's UG4 Project

- Extended reformation of single-sorted and multi-sorted logics.
 - Repairs now include splitting and merging of sorts.
 - Plus reorganisation of sort hierarchy.
- Exhaustively generate theorems in theory:
 - Repair any inconsistencies found.
- Identified heuristics to prune search space.
 - e.g., some functions/predicates protected, such as =, +, etc.

Search Space Control

- Huge search space: many possible repairs for every unwanted unification.
- Need heuristics to prune and prioritise.
 - Protect some functions/predicates.
 - Keep repairs minimal.
 - Maximise blocked inconsistencies; minimise blocked truths.

Conclusion

- Language repair essential in many applications.
- Reformation is general-purpose algorithm.
- Repairs must be propagated from chosen reformation suggestion to all axioms.
- Huge search space requires heuristic control.
- Explore extensions to other logics, e.g., DL.

Baader, F. and Snyder, W. (2001).

Unification theory.

In Robinson, J. A. and Voronkov, A., (eds.), *Handbook of Automated Reasoning, Volume 1*, volume I, chapter 8, pages 447–553. Elsevier.

